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Screenshot of the multiagent exploration simulator. The thick darker area is the explored area, the cones represents the field of 
perception of the enemies and the agents of the exploration team. 

 
 
Abstract 
 
When a group of characters in a game aim to 
efficiently explore an environment, it is important that 
they coordinate their actions to cooperatively discover 
new areas. This paper tackles the exploration task as a 
multiagent problem in the context of computer games. 
Four simple strategies and an auction-based 
negotiation strategy were implemented and evaluated. 
Their performance was compared in different scenarios 
according to a set of metrics proposed in the paper. 
Then, it was possible to figure out an efficient strategy 
for random scenarios. A simulator has also been 
developed in order to perform the necessary tests. 
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1. Introduction 
 
Nowadays, computer games represent a fast-growing 
entertainment sector that requires the research for new 
techniques as well as the improvement of the existing 
ones. Among the several types of games, real-time 
strategy (RTS) games present a set of challenging 
problems for AI research. In recent year, several AI 
researchers have focused their work in those problems 
[Almeida et al. 2004; Madeira et al., 2004; Posen and 
Spronck 2004; Santana 2005]. Buro and Furtak 
enumerate the AI challenges for RTS games, citing 

problems like: adversarial real-time planning, decision 
making under uncertainty, opponent modeling and 
learning, spatial and temporal reasoning, resource 
management, collaboration and pathfinding [Buro and 
Furtak 2004]. Sempé also mentions a class of problem 
related to spatial coordination in games where he 
classifies the problems of foraging, formation 
displacement, covering and patrol [Sempé 2004]. 

The spatial coordination consists on spatially 
allocating agents on the environment in a synchronized 
way in order to optimize the resolution of a problem. 
Among the problems related to this kind of 
coordination, this paper tackles the exploration task. 
This problem is important in the game context since, in 
RTS games, it is necessary to discover resources or 
enemies around a region. This issue can be extended to 
other application domains like robotics, military 
simulations, search and rescue on sea, among others. In 
fact, several works have already been done in robotics 
dealing with the exploration task [Burgard et al. 2000; 
Zlot et al. 2002; Zlot and Stentz 2006]. 

The objective of this work is to approach the 
exploration task in the game context. The problem 
treated in this work is similar to the robot exploration. 
However, some characteristics in the game context 
make it a particular case. Agents in computer games 
usually deal with hostile entities and enemies units 
spread on the world. They need then to cooperatively 
explore the environment while avoiding undesired 
regions found out during the exploration. Taking into 
account the dynamic aspect of the hostile entities and 
enemy units, it is possible to address the exploration 
with dynamic undesired regions or static ones. This 
work addresses the static problem where the hostile 
regions are fixed and not previously known. 



For this, it was initially implemented four simple 
reactive approaches. Those approaches were based on 
a planned coordination before execution and no 
planning communication during execution (therefore, 
indirect communication through the environment 
exists). After, a more robust negotiation-based 
mechanism (direct communication) of agent 
coordination was implemented and the results were 
compared to simple exploration mechanisms. 

Before discussing about the implemented 
approaches, it is presented some related works in the 
next section. After, some metrics to evaluate the 
algorithms were introduced in order to compare those 
approaches. This section also describes some 
characteristics inherent to the problem dealt in this 
paper. The following section presents some multiagent 
coordination techniques to solve the exploration task. It 
is subdivided in simple reactive strategies and a 
strategy based on negotiation. Before concluding, the 
results of tests performed over those strategies are 
presented and commented. 
 
2. Related work 
 
Most of the terrain exploration approaches found in 
literature focuses on robot-based exploration. Balch 
and Arkin [1999] investigated the communication role 
in a set of common robots. Their conclusion was that 
communication is needless, if the robots store 
information about their movements throughout their 
paths along an area. Such conclusion leads us to try an 
approach without any communication among the 
agents: the first four approaches of this paper have this 
feature. 

One of the exploration techniques is to slowly 
move the agents towards unexplored areas while trying 
to obtain detailed information about the terrain. The 
work presented by Iv [2002] showed that is possible to 
explore a region with minimum repeated coverage if 
the robots have a high degree of coordination. The 
robots move in a straight line parallel formation, if an 
obstacle is encountered, they break the formation in 
order to deviate it. The entities restore the formation in 
some point later. This kind of approach gets total 
terrain coverage, but it fails, if some robot does not 
succeed to complete its task, which is not appropriated 
for regions with hostile entities. 

Rekleitis et al. [2001] presented another technique 
to this problem. A stationary robot visualizes the robots 
that sweep the terrain, inside its camera’s field of 
vision. The obstacles are understood as blockages to its 
vision of the moving robots. There are always 
stationary robots that do not cover the area. If one 
robot fails, the others become useless. 

The strategy proposed by Simmons et al. [2000] is 
based on frontiers search and uses an auction-based 
protocol. The robot evaluates a set of frontiers cells 
(known cells bordering unexplored areas) and 
determines the expected travel costs and information 
gain (estimated number of unknown map cells visible 
from that frontier).  Then, the robots submit bids for 

each frontier cells. A central agent greedily assigns one 
task to each robot based on their bids. It is possible to 
get highly suboptimal results (as in many greedy 
algorithms) since the plans only consider the very near 
future. Such system is not totally distributed since it 
has central point of failure [Tanenbaum 1995]. If the 
central agent fails, the whole system also fails, and if 
some robot loses communication with the central 
agent, it ends up doing nothing. Such approach is not 
appropriate for games context due to a central control 
point which makes the exploring team vulnerable to 
enemies’ attacks that may cause the entire team failure. 

Yamauchi [1998] developed a completely 
distributed fault tolerant robot frontier-based 
exploration strategy. The robots share local sensor 
information in order to all robots produce similar 
frontier lists. Each robot moves to its closest frontier 
point, performs a sensor sweep, and broadcasts the 
resulting updates to the local map. Yamauchi's 
approach is completely distributed, asynchronous, and 
tolerant to the failure of a single robot. However, the 
amount of coordination is quite limited and thus cannot 
take full advantage of the number of robots available. 
For instance, more than one robot may decide (and is 
permitted) to go to the same frontier point. Since new 
frontiers generally originate from old ones, the robot 
that discovers a new frontier will often be the best 
suited to go to it (the closest). Another robot moving to 
the same original frontier will also be close to the 
newly discovered frontier. This can happen repeatedly; 
therefore, robots can end up following a leader 
indefinitely. A relatively large amount of information 
must be shared between robots. So, if there is a 
temporary communications drop, complete information 
will not be shared possibly resulting in a large amount 
of repeated coverage. Similar to the work by Simmons 
et al. [2000], plans are greedy and thus can be 
inefficient. 

Zlot et al. [2002] also developed a completely 
distributed robot terrain exploration strategy. That 
work uses a market-based approach in order to achieve 
the robots’ coordination. The robots continuously 
negotiate with one another, improving their current 
plans and sharing information about the covered and 
uncovered regions. Each robot has a set of goal points 
(tasks), each task is negotiated so that the most suitable 
robot to the task has that goal point in its list. Such 
strategy is appropriate to be extended to game context 
due to its fault tolerance and its success in experiments.  
 The strategy of Burgard et al. [2000] is 
probabilistic. It considers the travel costs and the utility 
of the goal points. When a goal point is assigned to a 
robot, the goal point’s utility is decreased to the others 
robots. So, the system assigns different tasks to the 
robots. This approach succeeded in experimental 
results and may be adapted to games’ context.  
 The presented approaches may be extended to the 
exploration task in strategy games. However the 
strategies having a central point of control might be 
inadequate when dealing with real-distributed games, 
since the loss of agents is frequent in strategy games. 
Most of the approaches use a discrete representation of 



the terrain (using cells). The work in this paper does 
not use grid cells, but a (pseudo) continuous area. The 
next section presents the characteristics of the problem 
dealt in this work. 
 
3. The exploration task 
 
The exploration task can be defined as the problem of 
discovering relevant information from an environment 
partial or completely unknown [Zlot et al. 2002]. 
However, the main issue in this problem is not only 
discovering the unknown environment, but also to 
minimize the time to discovery it [Burgard et al. 2000]. 
For an environment represented as a graph, this task is 
NP-Hard. For environments represented as a grid, it is 
always possible to implicitly handle the environment as 
a graph, just by thinking the grid cell as the graph 
nodes and the adjacent cells connected by the graph 
edges. Occupied cells (with obstacles) are not 
represented in the graph. 

In the context of computer games, the exploration 
task is related to the problem of taking relevant 
information from a region before the opponent and so 
to plan the best strategy to win the game. Relevant 
information in this context is then the knowledge of 
areas where the agents can obtain resources (gains) and 
the areas where the hostile or opponent characters are 
situated, which can be static or dynamic. The problem 
addressed in this work considers: 1) unknown enemy’s 
static positions, and 2) exploration priority to regions 
that are closer to the base. 
 
3.1 Problem characterization 
 
The problem tackled in this work has as objective 
function the maximization of the two predefined 
metrics presented in next subsection (3.2). Briefly, we 
attempt to cooperatively maximize the explored area in 
a given time t, and that the explored area be around the 
base. 

For the problem characterization, it was also 
introduced some definitions and restrictions. Firstly, 
the agents described in this work are immersed in an 
environment that is: 

• Continuous: agent movements are not tile-
based, but defined as steering functions; 

• Partially observable: the agents know only the 
explored area. In other words, the agents have a 
limited perception; 

• Deterministic: there is no event other than the 
ones created by the agents. The environment 
does not randomly change during the simulation. 

• Sequential: the next state of the agent is defined 
by the current state and the environment locally 
perceived. 

 
At the beginning, the agent’s base is randomly 

placed in the environment and all agents in the 
exploration team start from the base. The perception 
sensor in the agent is delimited by its field of view 
(FOV) and the area close by, representing the agent 

audio sensory system. The Figure illustrates the 
perceived area by an agent. It is important to point out 
that this field of perception is not related to the 
covering function presented in (Eq.2). It is mainly used 
for the fighting simplification, described in next 
paragraph. 

 

 

Agent 

 
Figure 1: Schema representing the field of perception (FOV) 

of an agent. 
 
Another simplification done was the fighting between 
enemies and agents of the exploration team. As the 
focus of this work is the exploration task (i.e. non-
deterministic fighting is not treated here), it was 
considered two simple rules: 

1. If an agent of the exploration team perceives an 
enemy unit before it (the enemy entered in the 
field of perception of the agent, but the agent did 
not entered in the enemy field of perception), the 
agent will avoid the area and will communicate 
to its colleagues that this area has enemy units. 
As consequence, all agents in the exploration 
team will avoid the area. 

2. If an enemy unit perceives an agent of the 
exploration team before it, the agent is taken out 
from the simulation (i.e. it is considered that the 
enemy fought against the agent and won). 

 
3.2 Exploration metrics 
 
In order to evaluate the performance of the strategies 
for this problem, it is necessary to define some metrics 
taking into account the information gains and the costs 
associated to the task. It was defined two main criteria 
for comparing algorithms results: 

1. Explored area density: this criterion focuses on 
how well explored is the area around the base of 
the agent team. Indeed, in a strategic game the 
base represents the region where the team must 
to take care in order to not be attacked. A bad 
exploration around the base might cache enemy 
units, causing, as consequence, undesired game 
results; 

2. Exploration quality: This criterion tackles the 
issue of minimizing the distance traveled to 
explore a region. As we consider that an 
exploration agent will continuously keep 
exploring the environment while it is still alive, 
the exploration quality was defined as the ratio 
between the total explored area up to a time t and 
the sum of the distances traveled for all agents up 
to the time t. This metric evaluates the cost 
(distance) that the agent had to explore a region. 

Another metric, the average covered area (the mean 
of the area that each agent has explored), could be 
defined in this work. However, the average and quality 
metrics are similar in a tile-based environment, since 



the agents will continuously travel with a fixed 
velocity. In a (pseudo) continuous environment, where 
the movements are based on steering behaviors, the 
distance traveled does not depend only on the number 
of agents, but also the environment itself. In other 
approaches, such function could be useful. So, we stick 
with the explored area density and exploration quality 
metrics. 

Before formalizing the mentioned metrics, it is 
necessary to define some basic functions that will be 
used. Let us consider φa

x(t) and φ a
y(t) to represent 

respectively the position of agent a over the x and y 
axis and δ(x,y) a function returning 1 whether the 
position (x,y) was not explored or 0 otherwise. 

With such these functions, it is possible to present 
the first metric: the Explored Area Density, shown in 
(Eq.1). Considering Ac as the set of the active agents in 
the simulation (those which are still alive) and 
dist(φa

(t),B) the distance from the agent a to the base 
(B) in time t, r is the distance of the farthest agent to 
the base in a given step t. In the density metric, E is the 
set of explored positions inside the circle of ratio r and 
center in the base (B), so #E means the numbers of 
elements in the set of explored area E. This metric 
show us how efficient is the spreading of the agents 
towards unexplored area: as previously mentioned, the 
area closer to the base has a higher exploration priority. 
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The second metric needs other basic functions. The 

first one is a covering function, which returns the 
unexplored area surrounding the agent. This area 
represents the region of perception of an agent. For 
simplicity, we have adopted a square area for the agent 
perception, resulting in the function on (Eq.2). In this 
function, L is the limit of the agent perception. 
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With the agent perception function, it is possible to 

recursively define a function to return the explored 
area up to a given time t for an agent a, shown in 
(Eq.3). The function γ is the basis of the metrics 
proposed in this paper. 
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Finally, the following function indicates the total 

explored area by the agents from the beginning of the 
simulation to the time t. The function is represented in 
(Eq.4), where A is the set of agents in the simulation. 
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Then, the Exploration Quality metric, can also be 

defined through the use of the total explored area. The 
quality is the ratio between the explored area and the 
sum of all distances traveled by the agents, which 
means that if a set of agents travels big distances to 
discover small regions, the quality is poor. The 
formulation is presented in (Eq.6). In the equation, 
Dista (t) represents the distance traveled by an agent up 
to the time t and v is the velocity vector. 
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4. Exploration as a multiagent problem 
 
As mentioned before, the exploration task is a sub-
problem in the class of spatial coordination. Agents 
need then to coordinate their actions to avoid traveling 
in an area already explored by another agent. For this 
multiagent coordination task, it was proposed five 
strategies. Initially, four simple strategies were 
proposed and tested. They used a reactive-based 
approach to explore the environment. Aiming to 
improve the results, a deliberative-based approach was 
implemented. The agent deliberation is done by 
constructing its plan and combining it with the other 
agent plans through a negotiation mechanism. 

The reactive and deliberative approaches are 
concerned only by the decision making layer of the 
agents, i.e. deciding where to explore. However, the 
displacement of the agents in all strategies uses a 
reactive approach based on the patterns of steering 
behavior proposed by Reynolds [Reynolds 1999]. The 
pattern used was Obstacle Avoidance for keeping away 
from obstacles and discovered enemies on the 
environment. 
 
4.1 Simple approaches  
 
The simplest approach to explore the environment 
would be to give to the agents a random function for 
their displacement. While it keeps the solution simple, 
there is no optimization for coordinating actions. 
Certainly, the performance of this approach evaluated 
by the proposed metrics (explored area density and 
exploration quality) would be very poor, and so, it was 
not considered in this study. 

Some other simple reactive strategies that might 
optimize the explored area are related to group 
formation [Dawson 2002] and follows some concepts 
presented in [Iv 2002]. In this approach, the agents do 



not move randomly through the environment. Instead, 
they are inclined to follow a predefined way, keeping a 
formation with the other agents. Indeed, this pattern of 
displacement can be seen in human teams, when for 
instance, firemen need to search and rescue an 
individual lost on the sea. As in the real world, this 
does not mean that the agents know about the 
environment. They just adopt a strategy of 
displacement, but obstacles may force a specific agent 
to change its predefined way. 

 

 
 

Figure 2: The visual representation of the four reactive 
strategies. 

 
The strategies proposed in this work are denoted by 

functions that update the velocity vector of the agent 
(this vector is part of the agent steering behavior and 
also drives the agent direction). Each agent takes a 
different direction when leaves the base. For testing 
purposes, four formation-based strategies were 
considered. They are described below and illustrated in 
Figure 2. 

a) Straight line: In this strategy the velocity vector 
of the agents is not altered. They follow a 
straight line while there is no obstacle on their 
path. In other words, only obstacles and 
discovered enemies might influence the agent 
path; 

b) Parabola: Following this strategy, the agents are 
inclined to follow their path according to a 
parabola. They will then turn around the base 
continuously getting far from it step-by-step; 

c) Spiral: In this strategy the agents will follow a 
spiral. It is similar to the parabola strategy at the 
beginning of the simulation. However it tends to 
be closer to base in a given time t compared to 
the parabola strategy; 

d) Sinusoid: Differently of the parabola and the 
spiral strategies, following the sinusoid strategy 
the agent will not turn the base continuously. It 
will tend to follow a sine curve, small at the 
beginning, but growing when the agent gets far 
from the base. 

 
The coordination mechanisms in these strategies are 

not dynamic. During the simulation, agents do not 
communicate to review their plans. This means that if 
the environment has several obstacles, the modification 
of the agent path will not be adjusted according to the 
areas already explored by other agents. An attempt to 
improve their results, the deliberative-based approach 
was proposed. 
 
 
4.2 Resolution through negotiation 
 
The exploration strategy proposed in this paper is 
based on some concepts proposed in [Zlot et al. 2002]. 
Differently from the original work, there is no 
centralized coordinator for the team. Instead, agents 
communicate between themselves without a predefined 
hierarchy, avoiding having a central point of failure 
[Tanenbaum 1995]. Another difference comes from the 
context of the application domain, i.e. computer games, 
like the ability to deal with undesired regions found out 
during the exploration (enemies). 

According to the taxonomy proposed in 
[Wooldridge 2002], negotiation can be viewed as a 
class of the coordination through competition. 
Although the exploration agents are part of the same 
team, they compete between themselves for space that 
gives to them some benefits (profit). The more 
profitable an area is (unexplored area) the more 
attractive for the agents. 

The main idea behind the strategy is that each agent 
defines a set of targets (positions) that it plans to 
explore in a sequence order, constituting the agent 
path. The waypoints of the agent path can be 
negotiated with another agent if the associated cost and 
benefits for the other agent present more profit. The 
route of the agents is continuously redefined through 
negotiation, as consequence, the team optimizes the 
explored area. 

While the benefit in this approach is associated to 
information revealed during the exploration, the cost is 
related to the expense to get to the target. This includes 
the distance, the resources lost in the displacement (in 
some games, the agent might have limited resources) 
and the potential dangers in the path, like enemies. The 
benefit function R(x,y) of a target is then the quantity 
of unknown points around it. However, this function 
underestimates the real gain, since to get the agent 
close to the target it may discover new areas in the 
way. The cost function of a target is based on the 
distance to the target and the presence of enemies 
(already found by other agents) crossing the path to the 
target. If an enemy is on the path of an agent towards a 
new target, the target’s cost associated to that agent is 
increased. However, if the same target is not risky to 
another agent (i.e., there are no enemies on its path 
towards its targets), the latter will have a higher 
priority than the mentioned agent to buy such target, 
because it will have a lower cost and so a higher profit. 
This way, the team attempts to avoid dangerous areas 
and unnecessary displacements by encapsulating the 



travel cost, revenue and risk of the areas in the profit 
function. For an agent, the real cost of a target Ca(x,y) 
is the difference between the cost of the whole agent 
route with the target and the cost without it. Finally, 
with those functions, it is possible to define the profit 
function as shown in (Eq.6). 
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Each agent tries then to maximize the quantity of 

information discovered while minimizes the cost in the 
travel. In this way, attempting to reach its own 
interests, each agent contributes for optimizing the 
exploration of the whole team, based on the negotiation 
of targets. However, up to now, nothing was mentioned 
about how the agents create their targets. 

Zlot et al. [2002] proposed three approaches for the 
agents generating targets for the exploration task: 1) 
randomly; 2) a greedy approach; and 3) following a 
Quadtree. Among those strategies, the simplest one 
was chosen (randomly), since, according to Zlot et al., 
it presents a better performance than the greedy 
approach and equally efficient as the Quadtree. 

In our problem, it is possible to get an unreachable 
target due to the obstacles in the environment. It is then 
necessary to provide a way to reevaluate the agent 
commitment to its target [Wooldridge 2002]. Since the 
environment is not previously known, usually it is not 
possible to know when a target in unreachable. Then, 
the agent will keep trying to get to the target while the 
distance traveled does not exceed a threshold. When 
this happens, the agent takes the target out of its 
waypoints and goes to the next target. Anyway, the 
traveled path might be precious for the agent since new 
areas might be discovered in the meanwhile. 

At the beginning of the simulation, every agent is in 
the team base and they generate randomly a fixed 
number of targets in the environment. The targets are 
added in the agent path following a greedy strategy in 
order to define the sequence of targets that minimizes 
the path cost. With the first target defined, the agent 
will try to negotiate its target with other agents in an 
auction-based negotiation until all its targets are 
offered. When the agent offers a target to negotiation, 
it also informs the minimum required price for it. The 
highest bidder buys the target adding it to its route. If 
no bid is made higher than the minimum price, the 
target is kept with the first agent. The auction for this 
negotiation is the FPSB (First Price Sealed Bid) 
[Wolfstetter 1996], which means that each buyer make 
their bid in a single turn without knowing the value 
offered by the other ones. 

The agent will try to negotiate all their targets. 
Once all targets are auctioned (probably it will keep 
some of them), the agent travels for the first target in 
its path. When an agent reaches a target or when all 
targets were sold, it generates a new set of targets, 
makes a new auction, orders the left targets and goes to 
the first one. The number of targets generated by an 

agent depends on the current number of target it 
already has in its path. An agent with few targets will 
generate more targets than an agent with a lot of targets 
in its path. Then, the agents have tours on the terrain 
that represents their auction-based coordination: each 
target is assigned to the agent that maximizes its utility 
by adding such target in the agent’s tour. 
 
5. Results 
 
In order to put the described ideas on practice and 
evaluate their results, a simulator was developed. The 
simulator has as main aim to support the study, in an 
empiric way, the suitableness of different strategies of 
multiagent coordination in the exploration task. 
 

 
 
Figure 3: Screenshot of the simulator. The thick darker area 

is the explored area, the cones represents the field of 
perception of the enemies and the agents of the exploration 

team. 
 

In order to evaluate the strategies, eight scenarios 
were defined. The first three scenarios has just one 
enemy on the environment, but the first one has no 
obstacles, and the second and third scenario, we 
augmented the number of obstacle for twenty and 
forty, respectively. In the next three scenarios (4th, 5th 
and 6th) we tested the strategies augmenting the 
number of enemies in the previous scenarios (1st, 2nd 
and 3rd) to four, evaluating the efficiency of the 
strategies in a presence of more enemies. Usually, RTS 
games move their units following a group formation. 
So, in the 7th scenario, we tested the strategies in a 
environment where the enemies are not randomly 
placed, but have a group formation (they make a 
square block, all of them point to the same direction). 
The 8th scenario, taking into account random 
environments, is described on 5.2. 

 



5.1 Pre-defined scenarios 
 

For each pre-defined scenario, several simulations 
limited to 500 iterations were executed in an 
environment defined by a region of 700x700 pixels and 
a perception area for each agent of 50x50. At the end 
of the simulation, the metrics of density and quality 
was evaluated and are shown in the Figures 4 and 5. 
The strategies in the figures are represented as 
numberOfObstacle_numberOfEnemies and the 
scenario where the enemies are in formation is 
represented by 40_4_form. 

 
Figure 4: Density chart for the scenarios (represented in the 

X axes). 
 

 

 
Figure 5: Exploration quality chart for the scenarios 

(represented in the X axes). 

 
The metric of density (Figure 4) gives some 

feedback about how well explored is the area around 
the base, i.e. it evaluates the explored area defined by a 
circle which radius is the distance of the farthest agent. 
It is observed that the Spiral strategy is, in general, 
better than the other ones, which makes sense since the 
agents will turn around the base and this area becomes 

very well explored (this strategy seems then be useful 
for the problem of discovering a specific target close to 
the base). It is also important to observe in the chart 
that, even being more complex than the others, the 
negotiation strategy does not have a better 
performance. Indeed, the implemented negotiation-
based strategy does not take into account the distance 
from the base. 

The last metric, measuring the quality of the 
exploration (Figure 5), showed that the Sinusoid 
strategy had the best performance, the Spiral one had 
the least exploration quality and the others had similar 
results. 

Analyzing those results, it was possible to 
understand the intrinsic mechanisms of the emergent 
behavior of the reactive approaches comparatively with 
the negotiation-based approach. Although its 
simplicity, the Sinusoid strategy seemed to be the 
better approach for the results. However, in order to 
generalize the problem for any environment, with 
variable enemies and obstacles (number and size), it 
was defined a random scenario, described here after. 

 
5.2 Randomly generated scenarios 
 
Several scenarios (Figure 3 illustrates one of them) 
were also tested in the simulator in order to evaluate 
the previously mentioned strategies. The randomly 
generated scenarios were based on the following 
specification: 1) the obstacles size was defined in a 
range of length and width in the interval [1,200]; 2) 
The position of obstacles and enemies were completely 
inside the environment; 3) The number of obstacles in 
the range of [0,40], and; 4) The number of enemies in 
the range of [0,8]. 

A sample of one thousand random scenarios for 
each strategy was generated. Among these scenarios, a 
set of tests was configured separating tests running 
with 300 and 500 iterations, and tests where the 
exploration team has 4 agents and 8 agents. Then, a set 
of 250 tests of each combination of these two variables 
was prepared. The number of exploring agents was 
fixed for better evaluate the performance of the 
strategies with an already known number of agents. 
The number of iterations was chosen as an attempt to 
estimate the performance of the algorithms in a short 
time and another with a longer time. The results are 
presented in Table 1. 

 

Table 1. Average (Av.) and Standard Deviation (S.D.) of 1000 running tests for each strategy evaluating the metrics and the 
percentage of the total area explored at the end of the simulation 

% Explored Quality Density 
Strategy 

Av. S.D. Av. S.D. Av. S.D 

Straight line 0.337 0.182 15.256 8.701 0.342 0.290 
Parabola 0.417 0.178 18.774 8.770 0.292 0.252 
Sinusoid 0.441 0.188 19.918 9.165 0.335 0.265 
Spiral 0.333 0.144 15.353 7.981 0.477 0.356 
Negotiation 0.497 0.174 22.621 8.826 0.333 0.292 

 



In order to evaluate if the difference between the 
averages of distinct samples is statistically significant, 
the Hypothesis Test [Mitchell 1997] was performed. 
According to the test, the negotiation strategy obtained 
statistical results significantly better than the other 
strategies in the quality metric. However, for the 
density metric, the spiral strategy was the best one. 
Although there exist differences between the averages 
of the straight line, sinusoid and negotiation strategies 
in the density metric, such a difference is not 
significant from the statistical point of view. This 
means that these strategies can be considered as with 
equal performance in the density metric. Using the 
hypothesis test in the percentage of known area after 
all the iterations, it was also possible to validate that 
the negotiation was the strategy most suited to the 
several scenarios generated. Indeed, it tries to minimize 
the exploration in an already known area. This results 
was expected since, the other strategies do not deal 
with this objective. On the other hand, the spiral 
strategy presented a better performance in the density 
metric. In fact, while the spiral strategy was conceived 
to focus the exploration close to the base, the 
negotiation strategy does not care about the base. The 
agents are driven to explore any undiscovered area, 
regardless where it is. 

The enemies make the scenario harder to the agent 
team. The presence of a large number of enemies 
causes loss of exploration quality, such effect is 
stronger in the reactive strategy. This is due to the lack 
of communication about the enemies positions. As 
shown, the negotiation-based approach is more robust 
to this type of scenario. 
 
6. Conclusions 
 
This paper presented an auction-based negotiation 
strategy for a group of agents to explore an unknown 
area. This strategy was compared to simpler reactive 
approaches according the two metrics: the explored 
area density and exploration quality. The results 
showed that using the proposed negotiation strategy 
would improve exploration, except when it is desired 
to enhance the explored area density. The spiral 
approach showed better results.  

Depending on the game requirements, a simple 
strategy may be suitable. It might be a group formation 
approach, as presented in the paper, or a steering 
behavior like flocking [Reynolds 1999]. However, 
when the explorer team has a more significant role in 
the game, the negotiation strategy is recommended. 
This work tackles an instance of the multiagent 
exploration task, conceived in order to simulate 
strategy games scenarios.   

A multiagent simulator was developed in order to 
perform the experiments and to work as a framework 
for further simulations. As a continuation of this work, 
several other strategies may be implemented and 
compared, according to the metrics, to the algorithms 
proposed here. 
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